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The combination of high-throughput methods of molecular biol-
ogy with advanced mathematical and computational techniques
has propelled the emergent field of systems biology into a position
of prominence. Unthinkable a decade ago, it has become possible
to screen and analyze the expression of entire genomes, simulta-
neously assess large numbers of proteins and their prevalence, and
characterize in detail the metabolic state of a cell population.
Although very important, the focus on comprehensive networks of
biological components is only one side of systems biology. Com-
plementing large-scale assessments, and sometimes at the risk of
being forgotten, are more subtle analyses that rationalize the
design and functioning of biological modules in exquisite detail.
This intricate side of systems biology aims at identifying the
specific roles of processes and signals in smaller, fully regulated
systems by computing what would happen if these signals were
lacking or organized in a different fashion. We exemplify this type
of approach with a detailed analysis of the regulation of glucose
utilization in Lactococcus lactis. This organism is exposed to alter-
nating periods of glucose availability and starvation. During star-
vation, it accumulates an intermediate of glycolysis, which allows
it to take up glucose immediately upon availability. This notable
accumulation poses a nontrivial control task that is solved with an
unusual, yet ingeniously designed and timed feedforward activa-
tion system. The elucidation of this control system required high-
precision, dynamic in vivo metabolite data, combined with meth-
ods of nonlinear systems analysis, and may serve as a paradigm for
multidisciplinary approaches to fine-scaled systems biology.
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As is typical with any new focus in science, the community has
not yet agreed on a generally accepted definition of systems

biology. Nonetheless, despite its young age, a perception is
crystallizing that systems biology might be synonymous with the
analysis of large networks that describe entire genomes, the
totality of protein–protein interactions, the comprehensive map-
ping of metabolic pathway systems, or the combination of these
systems at different levels of biological organization. Only a
decade ago, such assemblies were unattainable both experimen-
tally and analytically, but with modern high-throughput data
acquisition techniques and ever-increasing computational
power, they have come within reach. Their sheer size and high
connectivity, presented with modern means of visualization, are
indeed awe inspiring and have led to insights unimaginable only
a few years back.

The focus on comprehensiveness is appealing, yet it would
be shortsighted to make it exclusive. Biological systems are not
just large, but they are organizationally complex, which, in
addition to their often large numbers of components and
processes, is manifest in properties like dynamics, regulation,
and adaptation. These more subtle features tend to be ignored
in large-scale analyses, because they create mathematical
complications that presently cannot be captured or analyzed at
the level of all-encompassing systems. Nevertheless, these
features govern the life and responsiveness of cells and organ-
isms in a very significant fashion, and it therefore is necessary
to investigate their specific roles and functions. Because of the

intrinsic complexity associated with the nonlinear dynamics or
regulatory systems, it seems prudent at this point to pursue
rigorous and detailed analyses of representative ‘‘sandbox
examples’’ that help us discover successful patterns of design
and operation. It is widely expected that much of biological
organization is hierarchical and modular, and, if this suppo-
sition is true, insight into a variety of smaller systems
will create a foundation on which to approach a deeper
understanding of the functionality of large-scale integrated
systems.

As an example for the intricate nature of the regulatory
aspects of systems biology, we present here a model analysis of
a mechanism that allows the bacterium Lactococcus lactis to
respond very effectively to changes in glucose availability. The
functionality of this regulatory mechanism is not detectable with
the typical approaches of linear large-scale analysis. Instead, we
demonstrate how explanations of the rationale and functioning
of this controller become possible through a combination of
relatively low-throughput, yet very precise, data on the dynamics
of metabolic pools that were obtained through in vivo measure-
ments (1), kinetic analysis by using cell extracts (2), and tech-
niques of nonlinear systems modeling (3).

Lactococcus lactis is a member of the lactic acid bacteria
widely used in the industrial manufacture of milk-fermented
products. This homofermentative microorganism converts glu-
cose (or lactose) to lactic acid, via the Embden–Meyerhof
glycolytic pathway (Fig. 1), with �95% yield. The notable
production of lactic acid is responsible for the protection of dairy
products against spoilage by other microorganisms. In compar-
ison with the canonical model bacteria E. coli and B. subtilis, L.
lactis is a simpler system and, therefore, is well suited for
integrative study.

NMR spectroscopy is a noninvasive technique that allows
unique measurements of the kinetics of intracellular pools of
metabolites directly in living cells (4). We monitored the pools
of labeled intermediates and end products, with a time resolution
of 30 s, in nongrowing L. lactis cell suspensions after a pulse of
[6-13C]-labeled glucose (5). In addition to lactate and glucose,
the levels of fructose 1,6-bisphosphate (FBP), glucose 6-
phosphate (G6P), 3-phosphoglycerate (3-PGA) and phos-
phoenolpyruvate (PEP) were measured online (Fig. 2).

Results and Discussion
Initial Observations and Doubts. At first glance, the data in Fig. 2
make intuitive sense. Glucose is taken up by the cells and
converted into G6P and then FBP. The latter is converted into
trioses (3-PGA and PEP), which ultimately form lactate. A
closer look raises questions. What is the importance of such a
strong, transient accumulation of FBP? What are the reasons
for seemingly unimportant intermediate metabolites like
3-PGA and PEP to accumulate persistently after glucose
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depletion? What is the functionality of the 2-fold control of
the pyruvate kinase (PK) reaction that converts PEP into
pyruvate?

Maybe most intriguing is the question of how glucose uptake
gets started after a period of glucose starvation. Arguing based
on the tenets of linear pathway analysis, any amount of available
glucose would run through the glycolytic system, causing a
slightly delayed, transient accumulation of all intermediates,
including PEP. PEP would quickly be converted into pyruvate
and, thereby, used for the production of lactate, which the
bacterium releases into the medium. Furthermore, any tempo-
rary accumulation should be minimized, because the storage of
otherwise unneeded intermediates is undesirable (6–8). After a
period of glucose starvation, one thus would expect depletion of
the PEP pool, and PEP and 3-PGA levels below the detection
level at the beginning of the experiment therefore seem reason-
able (cf. green lines in Fig. 2).

However, the apparent lack of PEP under glucose starvation
would create a severe problem. In the extreme, glycolysis could
not even be started, because the phosphorylation of glucose
depends on phosphate, which in Lactococcus is primarily pro-
vided by PEP. Something must be missing in this simplistic, linear
reasoning.

A more detailed analysis suggests indeed that the initial PEP
pool should be of considerable size. The experimental data show
that PEP and 3-PGA are at high concentration levels at the end
of the experiment, and these levels apparently decrease only very
slowly. Thus, imagining the time period before the present
experiment, one should surmise high levels as well, resulting
from the last time glucose was available and then used up (cf.
orange lines in Fig. 2). The apparent discrepancy with the
experimental data (diamonds in Fig. 2) vanishes upon realization
that the NMR technique detects only labeled metabolites, with
the label stemming from the glucose substrate, whereas any
preexisting, unlabeled metabolite pools remain undetected.
Confirming this deduction and consistent with independent

Fig. 2. Dynamics of metabolite pools in L. lactis strain MG1363 derived from 20 mM [6-13C]glucose metabolized under aerobic conditions at pH 6.5 (5).
Experimental data (dark blue diamonds) were obtained with in vivo 13C-NMR techniques. Under the experimental conditions used, the detection limit for
intracellular phosphorylated metabolites was 3 mM. Green lines, a priori inferred dynamics of 3-PGA and PEP below the detection level. Orange lines, dynamics
of unlabeled 3-PGA and PEP, inferred from a model analysis of the observation that 3-PGA and PEP are still high in concentration after 40 min of starvation, a
situation that should be similar to the beginning of the experiment. Support of this inference came from the fact that the NMR technique measures only labeled
compounds but not the unlabeled 3-PGA and PEP pools at the beginning of the experiment. Light blue lines, simulation results with a mathematical model
constructed under the guidelines of Biochemical Systems Theory (3, 6–9) (see Methods and supporting information for details).

Fig. 1. Simplified representation of glycolysis and lactate production in L.
lactis. Black arrows show flow of material. Gray arrows indicate signals, minus
sign indicates inhibition, and plus signs indicate activation.
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observations (2, 9), an experiment with the addition of a second,
identical pulse of labeled glucose resulted in large pools of
labeled 3-PGA and PEP that derived from the first pulse of
glucose and decreased to undetectable levels within seconds
upon the second glucose supply (ref. 1; Fig. 3). Our conclusion
therefore is that the trioses 3-PGA and PEP should have high
values at the beginning of the experiments (comparable with
those at the end of the experiment), whereas G6P and FBP
would be essentially depleted, as observed. The unlabeled triose
pools would be consumed rapidly during glucose phosphoryla-
tion (orange lines in Fig. 2).

To test the validity of this conclusion, we simulated the tandem
experiment (1) with our model by using exactly the same
parameter values as before. As in the wet experiment, a second
pulse of glucose was supplied at 23 min, and the offline dynamics
of ATP and Pi was assumed to repeat itself as at the beginning
of the experiment. Even without any reparameterization, the
responses of the model reflect the actual observations quite well
(Fig. 3). One notes that the glucose degradation in this exper-
iment is slightly different from our previous experiments (Fig.
3A). This difference is the consequence of interexperimental
variability and is not a fitting error, because the glucose data of
the original experiment enter the model as offline input, and
these data are used here again. As secondary consequences, the
lactate dynamics in the tandem model is slower than observed
(Fig. 3A), and the dynamics of FBP and 3-PGA in the model is
faster, leading to 10–15% higher peak values in FBP (Fig. 3B).
Interestingly, in both the observation and the model, the second
FBP peak is slightly higher than the first, which one may interpret
as a consequence of the residual amounts of 3-PGA and PEP,
which are somewhat higher at t � 23 than at t � 0. The first data
points of 3-PGA and PEP after the second glucose bolus are,
without any intervention, very accurately predicted by the model
(Fig. 3B).

These simulations and conclusions raise the interesting ques-
tion of how the cell manages to achieve and maintain a high PEP
concentration under conditions of glucose starvation. As argued
before, a pathway model without regulation hardly would be able
to explain this phenomenon. Regulation provides a possible
explanation, according to the following hypothesized scenario.
FBP has been shown to be a strong activator of PK (9). With FBP
decreasing toward zero and the inhibitor Pi increasing beyond 20
mM, PK is no longer active, and PEP can no longer be converted
into pyruvate. The second pathway of PEP dephosphorylation,
the glucose transport system, becomes limited by glucose avail-
ability at this stage. Thus, PEP is ‘‘trapped.’’ Because PEP and
3-PGA are related through a reversible reaction, 3-PGA also

reaches a more or less constant level that is in the observed
equilibrium with PEP. It is interesting to note that the noise in
PEP and 3-PGA at these later stages of the experiment is much
higher than in all other metabolite pools of the system, which
may be an indication of the intense shuttling between the two
pools.

Analysis per Simplified Model. It is easy to arrive at faulty conclu-
sions when using hand waving arguments. Therefore, to assess
the validity and efficacy of the proposed mechanism of starting
and stopping glycolysis, while not being distracted by details and
uncertainties of the true pathway, we mimicked the unusual
feedforward activation system with a simplified linear pathway in
which uptake of substrate requires a downstream metabolite
(X4) as a second substrate, activator, or cofactor and where an
early metabolite (X2) activates the degradation of X4 (Fig. 4).
Thus, X1 corresponds to G6P, X2 to FBP, X3 to 3-PGA, X4 to
PEP, and X5 to pyruvate.

With typical parameter values, which are numerically not
sensitive, a model of the pathway may read

Ẋ1 � Input1 � Input2�X4
0.5 � X1

0.5 X1�0� � 1,
Ẋ2 � X1

0.5 � X2
0.75 X2�0� � 1,

Ẋ3 � 2X2
0.75 � 2X3

0.4 X3�0� � 1,
Ẋ4 � 2X3

0.4 � Input2�X4
0.5 � X2

h42X4
0.5 X4�0� � 1, and

Ẋ5 � X 2
h42X 4

0.5 � X 5
0.5 X5�0� � 1.

[1]

The system has two inputs, one that represents some low-level
constant substrate supply (Input1 � 0.01), which prevents the
system dynamics from ceasing altogether, whereas the other one
(Input2 � 0.99) is controlled by X4. In the Lactococcus system,
these inputs correspond to ATP-based and PTS-based glucose
phosphorylation, respectively. The steady state of the system is
(1, 1, . . . , 1). The parameter h42 in the conversion of X4 into X5
reflects the feedforward activation of primary interest. With the
value h42 � 0.75, the system shows the response in Fig. 5A. For
this time course, the system starts at its steady state. At t � 10

Fig. 3. Simulation of a tandem experiment (1), in which a second glucose bolus is given after 23 min (arrow in A). The dynamics is captured rather well, even
though no parameters were readjusted. Differences seem to be caused, at least in part, by the rate of disappearance of the first bolus of glucose, which is faster
than in the experimental data we used originally. (A) Observed dynamics of glucose (circles) and lactate (squares), superimposed with model simulation (lines).
(B) Observed dynamics of FBP (squares), 3-PGA (circles), and PEP (triangles), superimposed with model simulation (lines). Data redrawn from ref. 1.

Fig. 4. Generic linear feedforward activated pathway in which a down-
stream metabolite (X4) is needed as a second substrate for the first step.
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min, the main input is suddenly stopped (Input2 � 0). Because
of this artificial suddenness, all variables except for X4 almost
immediately approach a very low value that is maintained by the
constant low-level input. With X2 close to zero, its activation of
the degradation of X4 ceases, and X4 is produced but virtually not
degraded. In comparison with the Lactococcus data, the dynam-
ics of X4 does not show the initial decrease. This difference in
response is due to simplifications in the artificial pathway. Of
main importance is that upon restoration of Input2 at t � 60, the
system is immediately ready to resume activity.

The feedforward activation design is to be compared with an
otherwise equivalent pathway with h42 � 0, which means that X2
does not feed information forward to the degradation of X4.
Everything else remains the same. It is noted that this type of
analysis would be difficult to execute experimentally, because
one would have to create a pyruvate kinase that is insensitive to
FBP activation, without having any other metabolic conse-
quences. The model response now is strikingly different (Fig.
5B). Because the lack of X2 does not stop the degradation of X4,
X4 decreases in sequence with all other metabolites. As soon as
the substrate input is restored (t � 60), the low residual amounts
of X4 allow the system to take up the substrate, but only at a very
slow rate, and with the given parameter values, it takes �30 h
before the pathway is within 5% of its original steady state.

In the Lactococcus pathway, the reaction between 3-PGA and
PEP is reversible. Including this reversibility in the simplified
model does not change our conclusions. In fact, even with a
reverse flux one-third as strong as the forward flux, the quan-
titative results are almost indistinguishable, except for a slightly
decreased peak level of X4 and a residual amount of X3 during
starvation (see supporting information, which is published on the
PNAS web site).

One also could surmise that more gradual changes in input
might alter our conclusions on the effect of feedforward acti-
vation. To test this proposition, we ramped the input down
during the time period between 10 and 20 min and ramped it up
during the time period between 60 and 70 min. As expected, the
dynamic responses of the model system were ‘‘softened’’ by this
change, but the generic conclusions remained unchanged (see
supporting information).

Implications for Lactococcus. If the interpretations from the sim-
plified model hold for Lactococcus, the feedforward activation of
the pyruvate kinase reaction by FBP translates any lack of
glucose into a stop of glycolysis at the perfect position, namely
the one that would otherwise use up PEP. By doing so, the
mechanism creates a holding pattern that is immediately ready
to take up new glucose. To test this hypothesis, we used our
model of glycolysis in Lactococcus. This model indeed captures

the observed and inferred data well (light blue lines in Fig. 2; see
supporting information for details) and, in particular, confirms
the efficacy of the stop-and-hold mechanism that we proposed
from the simplified artificial pathway above.

Interestingly from the viewpoint of network design is that
strong FBP activation would suffice to control glucose uptake in
a desirable manner, but that PK is additionally inhibited by
inorganic phosphate (Pi; see Fig. 1). Indeed, Mason et al. (2)
experimentally investigated this feedforward inhibition in the
same organism and argued that Pi rather than FBP controlled
glucose uptake. At first glance, activation by FBP and inhibition
by Pi seem interchangeable, because the dynamics of Pi essen-
tially exhibits the upside-down image of the dynamics of FBP
(compare Figs. 2 and 6). However, there are significant strategic
differences between FBP or Pi controlling glycolysis. First, all
available data indicate that Pi drops very quickly upon glucose
availability. Without FBP control, this drop would imply a very
fast release of PK inhibition and could lead to competition
between PK and PTS that would be undesirable in this early
phase of glucose utilization. More importantly, the dynamics of
Pi is coupled to a large number of reactions, including many of
those that involve ADP and ATP. Thus, whereas control by FBP
is specific, control by Pi would allow a variety of other metabolic
processes to affect glycolysis in a very significant fashion. With-
out FBP control, any drop in Pi during glucose starvation would
lead to an immediate depletion of the PEP pool. For example,

Fig. 5. Responses of the pathway in Fig. 4, as implemented in Eq. 1, where the main substrate influx is stopped between t � 10 and t � 60. (A) X2 activates the
degradation of X4. (B) The activation of the degradation of X4 by X2 is eliminated.

Fig. 6. Dynamics of inorganic phosphate during lactate production in L.
lactis. Measurements were obtained with in vivo NMR techniques (5).
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Mason et al. (2) found that the Pi dynamics after a bolus of
glucose depends dramatically on temperature. At 15°C, the Pi

level remains low, whereas it returns rather quickly to a high level
at 30°C. If Pi were the main controller of PK activity, temper-
ature in effect would become a regulator of glucose uptake.
Furthermore, the return to high Pi levels is only possible through
reactions outside glycolysis, because glycolysis is a Pi sink. Taken
together, any regulation by Pi without FBP control would be
delegated to other mechanisms and become one step removed
from the target action.

The model allowed us to test deductions on the relative impor-
tance of FBP and Pi. Specifically, we performed simulations where
we compared the responses of our Lactococcus model with alter-
native models where PK was unregulated, only activated by FBP or
only inhibited by Pi (see supporting information for numerical
results). As to be expected, the unregulated model showed sequen-
tial increases and decreases in all glycolytic metabolites after the
initial few minutes when ‘‘old’’ PEP still was available, and only
lactate accumulated toward the end. Of particular note, no PEP
remained in the system to restart glucose utilization. Confirming
our results with the artificial, simplified pathway (Figs. 4 and 5), the
FBP-activated model showed essentially the same responses as the
fully regulated model. By contrast, the Pi-controlled model did not
lead to PEP and 3-PGA accumulation toward the end of the
experiment, even if we altered the strength of Pi inhibition up or
down. Further analysis suggested the dynamics of Pi as the main
reason. This dynamics, although being more or less the mirror
image of FBP (cf. Figs. 2 and 6), is delayed by between 5 and 10
minutes. This delay in the resurgence of Pi is crucial, because it is
sufficient for FBP to deplete before the inhibition of PK causes PEP
and 3-PGA to accumulate. Thus, in addition to the general strategic
considerations above, the numerical features of the dynamics of the
system support the importance of FBP as a crucial controller of the
pathway.

Not shown in Fig. 1 is that FBP actually is in equilibrium with
DHAP and Ga3P and that PEP is in equilibrium with 3-PGA and
2-PGA. These sets of readily interchangeable pools may have their
own functions, but the reversible steps also contribute to a slight
time delay and to a softening of the role of FBP as terminator of
glycolysis. While material along the glycolytic pathway between
FBP and PEP is still being processed and ultimately accumulates in
PEP and 3-PGA, they give the system enough time between
shutting down PK and replenishing PEP to the observed ‘‘holding’’
level. Because the reaction between PEP and 3-PGA is reversible,
3-PGA (as well as other related trioses) must be retained at normal
levels also, otherwise PEP would drain from the system. Eventually,
these pools do leak, possibly due to residual PK activity, which may
be needed for the low-level generation of pyruvate and other critical
compounds.

One should note that Mason et al. (2) came to the conclusion that
Pi, rather than FBP, should be the dominant controller of glycolysis,
because PK can be active in the absence of FBP. However, this
activity only happens for Pi concentrations ��3 or 4 mM, which,
in our case, only occur very briefly (cf. Fig. 6). The same data reveal
approximately two-thirds maximal PK activity if FBP is present at
a physiological level of 30 mM, even if Pi is at a relatively high
concentration (20 mM). This finding suggests that, for physiological
Pi concentrations, PK is active only if FBP is present in sufficiently
high concentrations. These quantitative considerations also show
that the control mechanism is rather insensitive to physiological
fluctuations in Pi and prevents PK from catalyzing PEP unless Pi is
really low and FBP is very high. One explanation for the role of Pi,
rather than being a direct effector, may be that even low Pi values
increase considerably the Ka for FBP, thereby further increasing its
regulating effect as activator (10–11).

Conclusions
It is usually assumed that the accumulation of intermediates in a
linear pathway is disadvantageous, because their storage is unnec-
essary yet chemically costly (6–8). The observation of high 3-PGA
and PEP pools in Lactococcus therefore appears to point to a
suboptimal pathway design. However, closer scrutiny corrects this
conclusion. Many homofermentative lactic acid bacteria, including
Lactococcus, live in environments where glucose availability may
fluctuate widely between high concentrations and extended periods
of starvation. As long as glucose is plentiful, the bacteria employ
efficient transporters that feed the substrate into metabolic path-
ways that, in turn, use it for energy production and population
growth. In situations without sugars in the medium, the organisms
cannot grow. During these periods of starvation, it becomes crucial
to be well prepared for future availability of glucose, which the
organisms must use quickly for energy generation and for the
excretion of lactate, whose acidity helps them create and maintain
an advantage over potential competitors. To achieve this readiness,
the organisms must enter a holding pattern that is characterized by
high concentrations of PEP, which is needed as phosphate donor for
glucose consumption.

Without an effective control design, a holding pattern of this type
would not be possible. All glucose would be converted into lactate
and other end products, such as acetate, acetoin, and ethanol. In
particular, without PEP, Lactococcus would be less competitive
against organisms by using ATP for glucose phosphorylation and
any sudden availability of glucose would be of little benefit, because
of the organism’s sluggishness in taking up the substrate. Lacto-
coccus and other homofermentative lactic acid bacteria therefore
are faced with the design task of maintaining PEP at relatively high
concentration levels that last long enough to bridge normal periods
of starvation. It appears that these concentration levels are fine
tuned so that the amount of phosphate donors necessary for rapid
glucose utilization after starvation are just sufficient to hold over
until de novo trioses are provided through glycolysis.

Our comparative studies with lacking FBP and�or Pi regula-
tion demonstrate the power of detailed systems biological anal-
yses. Experimentally, such studies are very difficult, if not
impossible (12), but their computational equivalents are easily
capable of deciphering the advantages of one regulatory design
over another. In the present case, they show that accomplishing
the goal or retaining PEP not only requires a clever structural
and regulatory design but also critically depends on precise
timing. If the outlet of the pathway, catalyzed by pyruvate kinase,
is closed too rapidly, unnecessary amounts of material are stored
in the form of trioses. Otherwise, if pyruvate kinase is deacti-
vated too slowly, most glycolytic material is converted into
lactate, thereby causing PEP depletion that is detrimental for
future glucose utilization.

Lactococcus operates the glycolytic pathway and its needed
PEP holding pattern with a feedforward activation mechanism
that is rare in metabolic systems. This mechanism is fortified with
a second mechanism of feedforward inhibition by Pi that, by
itself, appears to be inferior. The observed design, when eluci-
dated in this fashion, proves to be very effective. The strong
transient peak of FBP (Fig. 2) facilitates a very quick conversion
of PEP into pyruvate and lactate while glucose is available but
is also an effective stop of PK activity when glucose is no longer
available. The source and position of activation appear to be
optimal. In contrast to G6P, which is a major metabolic branch
and control point, and to F6P, which is in very fast equilibrium
with G6P, FBP is the first intermediate dedicated to glycolysis
but not much else. By virtue of the fact that FBP activates PK,
and not some other intermediate step, glycolysis stops and holds
at the perfect position, namely PEP.

The regulation by FBP is accompanied by a secondary regulatory
mechanism involving Pi. Without FBP, this regulation would be
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sensitive to Pi fluctuations anywhere in the cell, thereby disquali-
fying Pi as sole regulator. Such Pi fluctuations are frequent occur-
rences, because they are connected with many changes in the energy
status of the cell that, in turn, affects the activity of glycolysis,
because PFK is activated by ADP. Under normal conditions, Pi
inhibition and FBP activation have complementary roles, and Pi
therefore solidifies the start-and-hold mechanism controlling glu-
cose utilization. An interesting detail is the surprisingly large pool
of FBP that accumulates transiently during glucose consumption.
Although there is no experimental proof, one may surmise its role
as a protectant against situations where glucose is available, but Pi
is high for extraneous reasons, for instance, because large quantities
of ATP had been used somewhere in the cell. The high Pi level
would inhibit PK, thereby leading to an accumulation of trioses at
an inopportune time that would be controlled by factors outside
glycolysis. Only a strong peak in FBP would overcome this inci-
dentally inappropriate control.

One may speculate why Lactococcus uses the PTS system rather
than ATP for glucose phosphorylation. Despite the clear disad-
vantage of a strong dependence on a well timed, reliable PEP
dynamics, this design has the notable advantage for Lactococcus
that most of the glycolytic process is short-circuited through the
PTS system. Thus, the organism uses the first available glucose
directly to produce pyruvate and then lactate, thereby souring the
surrounding medium at a critical time when potential competitors
attempt to take up glucose. Of note is that this process is indepen-
dent of FBP, which at that point is still in its depleted state.

The mechanism of feedforward activation is unusual. Feedback
inhibition is widely recognized as a ubiquitous mechanism of
controlling the sizes of metabolite pools. Feedforward inhibition
has been observed in a number of pathway systems and, under the
right conditions, can have a stabilizing effect on the pathway
(13–14). Feedback activation usually is dreaded, because it often
leads to instability. Feedforward activation has been reported in
neuronal systems, but hardly in a metabolic context, and activation
of PK by FBP is indeed the best-known example. We have shown
here that feedforward activation, properly embedded in a regula-
tory system, provides a potent tool of pathway control.

Stepping back from these pathway-specific features, our anal-
ysis demonstrates how important it is to investigate the timing
and the regulatory features within a system in intricate detail.
Such investigations are possible only if they are based on data
that are obtained under physiological conditions and that are
crisp enough to permit differentiating analyses. Combining such
data with nonlinear dynamic analyses seems to be the most
promising path toward discovering natural design principles and
developing a true understanding of complex systems in biology.

Methods: Model Design
Directly based on the diagram in Fig. 1, we constructed and
implemented a series of fully kinetic pathway models within

Biochemical Systems Theory (3, 6, 15–17) as modeling frame-
work. Choosing the Generalized Mass Action representation,
the resulting model in symbolic form is

X1 � Offline Glucose Input,

ATP � Offline Concentration of ATP,

Pi � Offline Concentration of Pi

Ẋ2 � �2 X 1
g21X 2

g22X 5
g25 � �2 X 2

h22ATPh2,AT P,

Ẋ3 � �2 X 2
h22ATP h2,AT P � �3X3

h33P i
h3,Pi,

Ẋ4 � 2�3 X 3
h33P i

h3,pi � �4 X 5
g45 � �4X 4

h44, [2]

Ẋ5 � �4 X 4
h44 � �2 X 1

g21X 2
g22X 5

g25 � �4 X 5
g45

� �51X 5
h513X 5

h515P i
h51,Pi � �52 X 5

h525,

Ẋ6 � �2 X 1
g21X 2

g22X 5
g25 � �51X 3

h513X 5
h515P i

h51,Pi

� �61X 3
h613X 6

h616 � �62X 6
h626,

Ẋ7 � �61X 3
h613X 6

h616.

Although setting up the equations was straightforward for most
variables, ATP and Pi were problematic, because these two vari-
ables are involved in many reactions that cannot all be included in
the model. ATP and Pi, therefore, were not modeled as differential
equations but as ‘‘offline’’ input functions in the form of raw data
that were locally smoothed (18–19). Similarly, glucose was repre-
sented as an offline function, because the observed glucose uptake
follows a sigmoidal function that is incompatible with the structure
of the pathway (18). NAD and NADH were essentially constant
under the aerobic conditions modeled here (data not shown). Their
concentrations therefore were subsumed into the corresponding
rate constants. The production term of G6P contains G6P itself,
because it could be that G6P inhibits glucose uptake and utilization
(20), even though this mechanism has not been demonstrated for
L. lactis.

Parameter values were obtained from the observed time
course data (Fig. 2) with a combination of inverse methods, as
described elsewhere in extenso (18). Pertinent numerical results
and technical details of model implementation in the freely
available PLAS (www.dqb.fc.ul.pt�docentes�aferreira�plas.html)
are given in supporting information.
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